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Analysis of New Composite Architectures 

John Whitcomb 
Aerospace Engineering Department and 

Center for Mechanics of Composites 
Texas A&M University 

College Station TX 77843-3141 

Review of Second Year 
This document describes progress during the second year of the NASA Grant NAG3- 
1270. Funding for this grant began May 1,1991. This report covers the period July 1,1992 to 
June 30, 1993. 

This grant has helped support three students who graduated in this grant year. Sitaram Gundapa- 
neni graduated in December 1992 with a master’s degree. Kyeongsik Woo graduated in August 
1993 with a PhD degree. Gopal Kondagunta graduated in August 1933 with a master’s degree. 
The last two actually finished all their work in late spring of 1993. Copies of the theses have 
already been sent to the technical monitor, so they will not be included in this document. Presen- 
tations were made at two national conferences and one workshop. A paper titled “Enhanced 
Direct Stiffness Method for Finite Element Analysis of Textile Composites” was presented at the 
1992 ASME winter annual meeting in November 1992. A paper titled “GlobaVLocal Finite Ele- 
ment Analysis for Textile Composites” was presented at the 33rd SDM conference in April 1993. 
A paper titled “Boundary Effects in TextileComposites” was presented at a workshop sponsored 
by NASA Langley Research Center in July, 1993. This paper was also presented at the Second 
U.S. National Congress on Computational Mechanics in August 1993. A copy of the first paper 
was included in last year’s report. Copies of papers related to the other two talks have been 
included in this report. Details of the research can be found in the papers and theses. While we are 
encouraged by the results to date, our studies indicate that the current technique €or interfacing of 
global and local models is not as accurate as we had hoped. The current technique involves exact 
displacement constraints. Because of the crudeness of the global model, this interfacing technique 
results in significant artifacts in the stress distributions near the globaVlocal boundary. Of course, 
one could just include a larger region in the local model if there are sufficient computer resources. 
A high priority this year will be improving the global/local interfacing by using variations of 
mixed boundary constraints. This will result in some local violation of compatibility, but it might 
reduce the artifacts near the boundary. A variety of computer programs have been developed with 
the help of this grant. The primary programs will be documented during the third year and submit- 
ted to COSMIC. 

. 
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GLOB AL/LOC AL FINITE ELEMENT ANALYS Is 
FOR TEXTILE COMPOSITES 

Kyeongsik Woo 
John Whitcomb 

Department of Aerospace Engineering 
Texas A&M University 

College Station, Texas, 77843-3 141 

Abstract 

Conventional finite element analysis of textile composites is impractical because of the 
complex microstructure. Global/local methodology combined with special macro elements is 
proposed herein as a practical alternative. Initial tests showed dramatic reductions in the 
computational effort with only a small loss in accuracy. 

Introduction 

There is a growing interest in the use of textile architectures for advanced cQmposite 
structures. Textile materials are known to have improved interlaminar properties and impact 
resistance. Due to the complicated architecture, analysis of textile structures is very challenging. 
One of the difficulties is the wide range of structural scales which must be considered. 

The basic repeating microstructural 
element in this figure is labeled 'coarse microstructure'. At this level, the very distinctive 
phases of textile composites are observed and discrete material modelling is needed. In contrast, 
there could be a level where a very large number of unit cells are considered. At this level, the 
characteristic dimensions are of the order of the structural elements, and the material appears 
almost homogeneous (schematic labeled as 'fine microstructure') and homogenized engineering 
properties can be used. In between these two levels lies another level of microstructure: the 
transitional level. At this level, there are too many microstructural details to model each 
discretely. Furthermore, the microstructural scale is too large to use homogenized engineering 
properties. 

Because of the different levels of microstructure, global/local finite element method can 
be one of the more efficient analysis methods for textile composite structures. Global/local finite 
element analysis is often used to study the stress distribution in a small portion of structures in 
great detail El-51. In this method, a relatively crude global mesh is used to obtain the overall 
response of the structure and refined local meshes are used in the regions of interest where rapid 
stress changes may occur. In analyzing a textile composite structure by the global/local method, 
a relatively crude global mesh with homogenized material properties can be used at the fine 
microstructural level. In the local meshes, the details of the coarse microstructure of textile 

Figure 1 illustrates the microstructural scales. 
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coiiiposites (eg. the individual tows and matrix pockets) are modelled discretely. However, in 
the transitional range of microstructure, discrete modelling is not practical even with 
supercomputers due to the huge computer memory and cpu requirements. Use of homogenized 
material properties is also often inappropriate. In this range, special finite elements are needed 
which can account for microstructure within a single element. 

References 16-81 discuss some possibilities. The elements described in these references 
are based on single or multiple assumed displacement fields. These elements are referred to by 
the authors as single-field [6,7] and multi-field [8] macro elements, respectively. Due to the 
multiple assumed displacement fields, the multi-field macro elements produce much more 
accurate results than the single-field macro elements. However, the multi-field macro elements 
are more costly to use than the single-field macro elements. Herein, single-field macro elements 
were used. However, the basic procedure is the same whether single-field or multi-field macro 
elements are used. 

In this paper, the global/local finite element method is used for stress analysis of plain 
weave textile composites. Single-field macro elements were used for the global mesh and 
conventional finite elements were used for the local mesh. The effectiveness of the proposed 
global/local procedure was studied in terms of the accuracy of the calculated local stresses. The 
effect of using the iterative or non-iterative global/local procedures on accuracy was also 
discussed. 

Analysis 

This sechii “uefly desciibes the theory for giobaiiiocai anaiysis and macro eiements. 
More details can be found in references [5] and [6]. 

Iterative Global/Local Method 

The total global solution can often be obtained by solving several subproblems. These 
subproblems are solved separately, while the interaction across the subregion boundaries is 
handled by iterative solution. These ideas are particularly attractive if several substructures are 
identical or if some of them have been analyzed previously [9]. In fact, in the preliminary 
design stage, a large number of analyses are performed with small local design change. Such 
is also the case when solving damage growth problems. 

Figure 2 shows a schematic of the iterative global/local method used. Initially the global 
problem is solved. Traditional finite elements with smeared engineering properties, single-field 
macro elements, or multi-field macro elements are used in the global mesh. After obtaining 
the global response, the globaUlocal boundary displacements are applied to a local mesh as a 
boundary condition and the local problem is solved. Due to the difference in mesh refinement 
in the local region, there is a violation in equilibrium at the global/local boundary. This force 
unbalance is defined by 
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where Fa is the externally applied nodal force vector and qa are the nodal displacements. 
Global/local iteration can be used to eliminate the residuals. Iteration is repeated until 
sufficiently small residuals are obtained. 

Note that the regions which need further refinement are not known a priori in general. 
Therefore, a standard procedure for the global/local method with local refinement would be 

(1) perform global analysis 
(2) find local regions of interest 
(3) define refined meshes for the local regions 
(4) perform global/local iterations 

The initial coarse global mesh can serve as the global mesh for the global/local iterations. 
If a direct solver is used, the decomposed global stiffness matrix is already available at this 
point. Since the initial global solution is required to identify the regions of interest, the cost for 
the global/local iterations is relatively cheap. 

This global/local method with local refinement assumes that the region which requires 
further mesh refinement can be localized. If the solution behavior is complicated everywhere, 
the correction by the globalllocal iteration does not necessarily reflect the nature of the true 
solution accurately. For example, if the solution behavior is complicated everywhere and only 
some portion of the global domain is refined in the local mesh, the global/local iteration may 
do more harm than good in solving the problem. This possibility was tested in this study and 
turned out to be so. A solution to this problem is using an engineering global/local analysis. 
In this procedure, the initial coarse global solution is assumed to be close enough for the purpose 
at hand. That is, no global/local iteration is employed. The local problem is solved only once 
with boundary displacements from the coarse global solution. This procedure is often used in 
engineering practices and serves well for the approximate solution at the initial design stage. 
In this paper, the local mesh nodal displacements at the global/local boundary were obtained by 
interpolation using the finite element shape functions for the coarse global mesh. 

Macro Finite Elements 

In the following, the formulation of single-field macro elements using subdomain 
integration is described. 

Figure 3 shows a typical finite element mesh used to define a four-node macro element. 
The symbol q denotes the nodal displacement vector. Subscripts M, i ,  and b represent macro, 
internal and boundary nodal degrees of freedom (dof), respectively. The stiffness matrix and 
force vector for this mesh is 
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To obtain the macro element stiffness matrix, all the dof except the macro element dof are 
eliminated or slaved. In single-field macro elements, multi-point constraints are used to slave 
the internal and excess boundary dof. In multi-field macro elements, static condensation is used 
to condense out internal dof and multi-point constraints are used to slave the excess boundary 
dof. For single-field macro elements, the macro element stiffness matrix can be expressed as 

where 

and for multi-field macro elements, this can be expressed as 

[K,I = [7lT&l[n (5) 

where 

The single-field macro element used in this paper is described in reference 6. Rather 
than explicitly using a transformation matrix, this single-field macro element divides the 
integration domain into subdomains and uses three coordinate systems to facilitate the numerical 
integration. Figure 4 illustrates schematically the mapping procedure between the coordinate 
systems. As seen in the figure, the contribution of the p-th subdomain to the macro element 
stiffness matrix can be written as 
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where 

The single-field macro element stiffness is then given by 

Note that only one set of functions is used for the displacement interpolation. 

Configuration 

Figure 5 shows a conventional two dimensional finite element mesh for a plain weave 
textile composite. The figure shows a symmetrically stacked textile structure with six plain 
weave mats. The plain weave textile mat was described by two parameters: the wavelength of 
the fiber bundle "a" and the thickness of the textile mat "b". The waviness of plain weave 
textile composites was defined to be 

Waviness = b/a 

In this study, the waviness of the plain weave mat was 0.333. 
The basic repeating unit cells are easily distinguished and nine complete unit cells are 

present. Each unit cell is composed of three material groups; 0" tows, 90" tows, and pure resin 
pockets. The material properties of the fiber bundles and resin pockets were assumed to be [lo] 

Fiber bundles (Graphite/Epoxy): 

E,, = 206.9 GPa, E 22 = E 33 = 5.171 GPa 
v12 = vI3 = vu = 0.25 

GI2 = G13 = G23 = 2.386 GPa 
X, = 1034. MPa, Y, = Z, = 41.37 MPa 
X, = 689.5 MPa, Y, = Z, = 117.2 MPa 

SI, = S23 = S13 = 68.96 MPa 

Resin (Epoxy): 

E = 3.45 GPa, Y = 0.35, G = 1.28.GPa 
X, = 103.4 MPa, X, = 241.3 MPa, S = 89.6 MPa 
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Plane strain conditions were imposed to obtain the two dimensional constitutive properties. 
Figure 6 shows a globaVloca1 mesh. The textile structure in figure 5 is discretized 

coarsely first using macro elements (region A+B),  and then one of the unit cells (region B)  is 
refined (region C) for detailed analysis. Four-node, eight-node, or twelve-node single-field 
macro elements were used for the global mesh. Four-node conventional finite elements were 
used for the refined local mesh. The degree of refinement of the local mesh was the same as 
the conventional mesh shown in figure 5. Since the geometry of plain weave textile composites 
has a distinct repeating pattern, only two types of macro elements were needed. Once the 
stiffness matrices for those two types of macro elements were obtained, these stiffness matrices 
were reused for the rest of the global elements. 

Table 1- shows the number of nodes, number of elements, and computer storage 
requirements for the classical and global/local finite element meshes. The table indicates that 
the saving in computer memory was huge. For more complicated or larger problems, this 
saving is expected to be greater. 

Table 1. List of number of nodes, number of elements, and profile storage requirements. 

NN NE Profile 

19131 
%node i33 36 -/Y 1 i 
4-node 49 36 1499 

Local: 4-node 886 864 99083 

_- - Global: 12-node 217 36. 

Conventional: 4-node 7645 7776 2065827 

Results and Discussion 

This section discusses numerical results for the global/local analysis of two dimensional 
plain weave textile composites. The two dimensional nine unit cell model of plain weave textile 
composite was loaded uniaxially in the x-direction. The top and bottom surfaces were traction 
free. The applied nominal strain was 0.005. 

Figure 7 shows the global/local iteration history in terms of maximum residuals at the 
global/local boundary versus iteration number. Four-node, eight-node, and twelve-node macro 
elements were used for the global mesh. The figure shows fast convergence for all cases. Note 
that for higher order elements, the initial maximum residual was smaller since better global/local 
boundary displacement interpolation was obtained with higher order shape functions while the 
convergence was slower since more degrees of freedom were involved in the global/local 
iterations. 
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Figure 8 shows the uI1 stress contours by the conventional FEM, the iterative global/local 
analysis, and the non-iterative engineering global/local analysis. Twelve-node macro elements 
were used for the global mesh. For the local mesh and the conventional mesh, four-node 
elements were used. The stress contours were for the upper left fiber bundle of the center unit 
cell indicated in the figure. The stress was transformed to the material axes. Surprisingly, the 
results by the non-iterative global/local analysis were better than those from the iterative 
global/local analysis. Figure 9 shows the ul1 stress distribution of the fiber bundle along the 
fiber bundle boundary FB6 indicated in the figure. This figure also shows an excellent 
agreement in the stress distribution by the conventional FEM and the non-iterative global/local 
method. The iterative global/local analysis predicted much higher stress compared to the 
conventional finite element analysis result. 

The global/local iteration was employed to eliminate the force residual at the globalllocal 
boundary. The force residual at the global/local boundary was due to the difference in the mesh 
refinement of the local region (shaded region in Figure 9) between the global and local meshes. 
For the local region, the stiffness matrix with the coarse global mesh was stiffer, while it was 
softer with the refined local mesh. Thus, for the iterative global/local analysis it is as though 
the shaded local region was replaced by a softer material. The softer region resulted in larger 
displacements and thus resulted in higher predicted stresses. 

The fiber bundle stress distributions were plotted along the 0" fiber bundle boundaries. 
Figure 10 defines the fiber bundle boundaries FB2, FB3, Fb4, and Fb6 for the stress plotting. 
Figure 11 shows the ull distribution of the fiber bundles along the fiber bundle boundaries FB2 
and FB4. The stress was calculated by the conventional FEM (C) and by the global/local 
analysis with four-node (Ml), eight-node (M2), and twelve-node (M3) macro elements. Since 
the non-iterative global/local analysis was found to be better in predicting the stress distribution 
for the current textile composite configuration, the stress was obtained using the non-iterative 
globalllocal analysis. Figure ll(a) shows that along FB2 the stress obtained by the global/local 
analysis was agreed well with that by the conventional FEM. Even the global/local analysis with 
the four-node macro elements performed very well except the regions near the global/local 
boundary (ie. close to x/b=+1.5, -1.5). 

Figure 1 l@) shows the stress distribution along FB4. Note that the FB4 path is much 
closer to the globalllocal boundary than FB2. The stress results by the global/local analysis with 
eight-node and twelve-node macro elements were acceptable away from the global/local 
boundary. However, the agreement was poor near the global/local boundary regions (ie. 

The disagreement near the globalllocal boundary regions was due to the low order 
displacement interpolation from the global solution. For better solutions, one can use higher 
order macro elements @-refinement) or smaller macro elements (h-refinement) for the global 
mesh. Both will improve the global response as well as the global/local boundary displacement 
communication. However, even for the coarse global mesh with low order macro elements the 
disagreement near the boundary regions is not a prohibitive concern since the definition of local 
regions is quite arbitrary. If one finds a region of interest, one can simply define the 
corresponding local mesh in such a way that the region of interest is located at the center of the 
local mesh. Away from the global/local boundary, the stress results from the non-iterative 
engineering global/local analysis was found to be quite accurate. 

Figure 12 shows a,, and u33 distributions along FB2, FB3, and FB6. The stresses were 
calculated by the global/local method with twelve-node macro elements. The stress distributions 

x/b=+1.5, 0, -1.5). 
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along these fiber bundle boundaries would be exactly the same if there was no free surface 
effect. However, this figure shows that the stress distributions along FB2, which was close to 
the free boundary, were different from those along FB3 and FB6, which were further inside. 
The difference between the stress distributions along FB3 and FB6 was very small. The free 
surface effects can be seen very graphically in Figure 13, which shows ul, and a,, stress 
contours for the upper three mats. The stresses were transformed to the material axes and 
normalized by the strengths. This figure shows that the stress distribution in layers 2 and 3 are 
almost mirror images, which indicates that the free surface does not significantly affect either 
layer. The stress distribution in layer 1 is much different from that in layers 2 and 3 because 
of the free surface effect. From these figures, one can conclude that the free surface effect plays 
an important role on the stress distribution in the surface layers of textile structures. For thick 
textile structures, the contribution of the boundary effect may be negligible. However, even for 
thick textile structures, the free surface effect should be considered in failure analysis, since the 
failure can initiate near the free boundary. 

Conclusion 

A two dimensional plain weave textile structure was analyzed using the conventional and 
global/local finite element methods. In the global/local analysis, single-field macro elements 
using subdomain integration were used for the global mesh. For the local mesh in the 
g!~hd.l!locd analysis and for the classical finite element mesh, the fiber tow geometry was 
modeled discretely. 

In this study, the g k h d h d  giecdilie Wi ih  fiXi0 deliieiii~ wa f~~uiid io be veq- 
efficient for the detailed stress analysis for textile composites. The complicated geometry makes 
discrete modeling impractical for realistic three dimensional analysis because of huge computer 
memory and cpu time. With the use of macro elements, global/local finite element analysis 
permits the detailed analysis for textile composite structures. 

It is shown that the iterative global/local method was not the best choice for textile 
composites. In this study, the non-iterative engineering global/local method predicted the local 
stress better than the iterative global/local method. The stress results from the non-iterative 
global/local analysis were acceptable except near the globdlocal boundary. More study is 
needed to improve stress calculation near the global/local boundary. 

The stress distribution near the free boundary of the plain weave textile composites was 
found to be different from that inside. Thus, for the detailed stress and failure analysis, the free 
boundary effect must be considered. 
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Fig. 1. Microstructural scales of textile composites. 



GlobalLocal Boundary Displacernents 
Solve Global Problem 

Region A I Region B Region C b 
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GlobaVLocal Boundary Forces 
* Global Mesh: A+B 

Local Mesh: C 

Fig.2. Schematic of iterative globaVloca1 analysis. 

q, (macro dof) = 

q i  (internal dof) = 

q, (boundary dof) = 

q = q ,  q b  

Fig.3. A typical submesh for a macro element. 
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Fig.4. Mapping in three coordinate systems. 
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Fig.5. A conventional finite element mesh for a six symmetrically stacked plane 
weave textile mats. (Number of nodal points = 7645, Number of elements = 7776) 
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A 

Local Mesh (C) 

Global Mesh (A+B) 

Fig.6. Coarse global mesh and refined local mesh. 

8-node element 4-node element 
0 5 10 15 20 25 30 35 40 

-6 

Number of Iterations 

Fig.7. Maximum residual versus iteration number for plain weave textile composite 
under uniaxial tension in x-direction. Three different global macro elements were 
used: 4-node, 8-node, and 12-node single-field macro elements. 
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(a) Conventional FEM 

GlobaVLocal Boundary GlobaVLocal Boundary 

(b) Iterative globalAocal method (c) Engineering globaVloca1 method 

Fig.8. Contour plots of ol by conventional FEM, iterative globaVlocal method, 
and engineering globaVlocal method. The stress contours were for the upper left 
fiber bundle of the center unit cell. 
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Fig.9. Distribution of o1 by conventional FEM, iterative global/local method, and 
engineering globaVloca1 method. The stress distribution was along the fiber bundle 
boundary FB6 indicated in the figure. 

16 



GlobaVLocal Boundary 

I I I I I I i i,- 

Fig. 10. Definition of paths for stress plotting. 

17 



650 I I 

x/b 

(b) FB4 

Fig. 1 1. Distribution of (T 11 along the fiber boundries FB2 and FB4. Conventional FEM (C)  
and globaVlocal method with 4-node macro elements (Ml), 8-node macro elements (NE), 
and 12-node macro elements (M3) were used. The stress was transformed to the material 
coordinate systems. 
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Fig. 12. Stress distributions along the fiber boundries FB2, FB3, and FB6. Global/local 
method with 12-node macro elements were used. The stresses were transformed to the 
material coordinate systems. 
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Fig. 13. Contour plots of normalized stresses for upper 3 mats. The stresses were transformed 
to the material coordinate systems and normalized by the strengths. 
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Boundary Effects in Woven Composites 

John Whitcomb' 
Copal Kondagunta 

Kyeongsi k Woo 
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Abstract 

Two dimensional finite elements were used to study boundary effects in plain weave 
composite specimens subjected to extension, shear, and flexure loads. Effective extension, shear, 
and flexural moduli were found to be quite sensitive to specimen size. For extension and flexure 
loads stress distributions were affected by a free surface, but the free surface boundary effect 
did not appear to propagate very far into the interior. For shear load the boundary effect 
appeared to propagate much further into the interior. 

Key Wrrrrlci textiles 
woven composites 
finite elements 
stress analysis 
boundary effects 

Introduction 

Fiber tows, each consisting of thousands of individual filaments, can be woven, braided, 

knitted, etc. to create complex fiber preforms. These preforms are then impregnated with a resin 

and cured to make textile composites. The interlacing of the fiber bundles provides many 

obstacles to damage growth. Accordingly, there is the potential for greatly improved resistance 

to impact damage growth. Unfortunately, there are also negative effects due to the fiber tow 

interlacing. The fiber tow curvature reduces the effective in-plane moduli. The curvature also 

Correspondence and proofs should be send to Dr. John D. Whitcomb, Texas A&M 
University, Aerospace Engineering Department, College Station TX 77843-3 14 1; telephone 
number: 409 845 4006. 
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particularly in the matrix. The fabrication process is not benign. For example, weaving involves 

much mechanical handling of unprotected fibers (i.e. fibers which are not embedded in matrix). 

Stitching of textile preforms to increase delamination resistance has the side effects of breaking 

fibers and inducing local fiber curvature. Optimal design requires the capability to predict both 

the positive and negative effects of potential textile fiber architectures. Unfortunately, the 

complex fiber architecture is difficult to analyze. Accurate analysis requires accurate geometric 

representation and constituent properties, such as fiber and matrix properties and fiber volume 

percentage. For textile composites there is particular difficulty in determining the actual fiber 

tow geometry and developing a three-dimensional model which can be analyzed. There have 

only been a few attempts at detailed three dimensional analysis (eg. Refs. 11-31). Even the 

accuracy of these models for local stress calculation is an open question because of the 

uncertainties in the input data (i.e. the approximation of tow geometry and other properties). 

Most of the analyses to date have been similar to laminate theory in level of approximation or 

detailed two dimensional (2D) or quasi-three-dimensional (Q3D) numerical analyses of a 

"representative" cross-section (eg. Refs. 14-71). As the schematic in Figure 1 shows, there is no 

such "representative" cross-section, even for a plain weave composite. While such 2D or Q3D 

analyses are likely insufficient for accurate prediction of local stress states, they are useful for 

obtaining insight about the effects of fiber tow waviness on effective moduli and strengths. In 

fact, the results in this paper, which are based on 2D analyses, fall into this category. 

~ 

I 

The analysis of textile composites is in its infancy as compared to laminated composites. 

There are many aspects of the behavior of these materials which have not even been examined, 

much less accurately described. The objective of this paper is to begin to address one question 
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about the behavior of plain weave composites: "How does the presence of a boundary affect the 

stiffness and stress distribution in a representative unit cell?" The boundary surfaces referred to 

here are those present due to finite thickness. Three nominally simple boundary conditions were 

considered herein: in-plane extension, transverse shear, and flexure. Configurations of different 

thicknesses were analyzed using 2D finite elements. The analyses were performed using 

conventionzl &:en% and multi-field macro elements (reference 8). Macro e!err.ents are defined 

to be elements which contain internal microstructure. The multi-field elements are a form of 

reduced substructuring. The macro elements permitted analysis of quite large models without 

requiring huge amounts of computer memory and cpu time. Of course, a few macro elements 

are not as accurate as using a huge collection of conventional elements. Accordingly, one 

additional objective of the paper is to evaluate the performance of macro elements for simple 

configurations. 

The following sections will begin with a discussion of the configurations studied. Then 

the results will be discussed. First effective extensional, shear, and flexural moduli will be 

discussed. Then the effects of boundaries on stress distributions will be discussed. 

Configurations 

The various configurations studied are all synthesized from a single basic unit cell. This 

unit cell will be discussed first. Then boundary conditions for infinite and finite configurations 

will be discussed. 

Unir Cell 

The basic unit cell is shown in Figure 2 . The cell consists of tows running in the x- and 

z- directions. In reality there would also be pure matrix pockets, but these were filled with z- 
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direction tows in the niodel used. (Of course, in reality there is no typical cross section either, 

as discussed earlier.) The two dimensional approximation implies that the x- direction tow is a 

wavy "plate" and the z-direction tows are straight fiber bundles. Obviously these are serious 

approximations, so the results presented are intended to be qualitative only. The centerline of 

the x-direction tows follows a wavy path described by the function Psinz. For the results 
4 a  

presented herein a= l.5P. The thickness of the tow as measured along a line normal to the tow 

centerline was held constant. It should be noted that the unit cell selected assumes a symmetric 

stacking of the woven mats. There are an infinite number of other possibilities. 

Two sets of two material properties were used. They are 

Set I 

E,, = 100 GPa h2 = 10 GPa k3 = 10GPa 

~ 1 2  = 0.35 ~ 1 3  = 0.35 ~ 2 3  = 0.3 

G,, = 5 GPa GI, = 5 GPa G, = 3.845 GPa 

Set I1 

E,, = 165.8 GPa 5, = 11.51 GPa E33 = 11.51 GPa 

"12 = 0.273 "13 = 0.273 VB = 0.33 

' G,,  = 15.4 GPa GI, = 15.4 GPa G,, = 4.17 GPa 

These properties were transformed to account for the waviness of the xdirection tow. 

Plane strain conditions were imposed to obtain two dimensional properties. Two sets of 

properties were used. This is admittedly not optimal. The homogenization analyses were 

performed using Set 1. The stress analysis results were obtained using Set 11. 
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Periodic Boundow Conditions for Infinite Confi.eurntions 

Figure 2 shows a typical unit  cell for symmetrically stacked mats before deformation. 

If this cell is imbedded within an infinite array of identical cells and displacements or tractions 

are imposed "at infinity", then every unit cell will deform identically. The periodicity of the 

displacement field can be imposed on a single unit cell, thus permitting the solution for the 

infinite domain. The solution for 2n infinite domain will be useful for comparison with finite 

configurations subjected to nominally uniform extension or shear. Using the coordinate system 

in Figure 2a, the periodic conditions can be expressed as 

There are no specified non-zero forces u h e  net forces are zero at  any point inside the infinite 

media.). The "load" consists of the values chosen for (ti2 - ul), (v2 - vl), etc. These values 

depend on the nominal strain state desired. (Specific values for the different states will be 

discussed later in this section. Equations 1-4 impose certain constraints which are not so 

obvious, but are worth mentioning, since they are exploited in the finite element analysis. These 

constraints are 

u3 - u4 = u2 - u1 

v3 - v2 = v4 - V ]  

u3 - u2 = u4 - u1 

v3 - v4 = v2 - v1 

(5) 

(6) 

(7) 

(8) 
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These constraints c a n  be obtained froiii equations 1-4 by substituting in specific vertex values 

of x and y- For example, substitute X = Q  into equation 3. 

u(a,P) = u(a, -0) + u4 - u1 

But u(a,P) = u3 and u(a, -0) = u2. Hence, equation 3 states that u3 - u2 = u4 - ul. Equations 

5-8 indicate that if the nodal displacements at the four corners of the unit cell are  used to 

and - are constant. The  calculate the displacement gradients, we find that 

subscript "0" is used to indicate that these are nominal displacement gradients. On a pointwise 

basis these are  certainly not constant for the obviously inhomogeneous unit cells. Equations 1-4 

(SIOS elo* ($lo ' (;Io 

can now be expressed as 

u(a,y) = u (-a,y) + 2a - (3, (9) 

Because of symmetries only part of the unit cell must be modeled. Herein the quarter unit 

cell shown in Figure 2(b) was modeled. If all the symmetries had been exploited, only 

one-eighth of the unit cell would have to be modeled. For convenience the coordinate system 

is shifted to the center in Figure 2(b). 
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For extension loading the boundary conditions are quite simple. The constraints imposed 

for nominal (T, loading are 
. 

u (-f, y) = o u ( 4 ,  y )  = specifid constant value 

= constant, but unknown 

Nominal a,, loading (which was not considered herein) would be very similar. For 

nominal a,,, load the boundary conditions are 

u (x, +) = -u (x, t) = specifid constant value 

u (T, -y) = -u ( + . Y )  

v ( - x ,  +) = -v (x,!) 

The  boundary conditions in equations 14 state that the displacements normal to an edge 

are anti-symmetric (and unknown except at the vertices). The tangential displacements are 

constant along an edge and are specified. 

Boundarv Conditions for Fin.ire Confieurations 

Extension, shear, and flexure loading were considered for a wide range of specimen 

thickness (in the y-direction). Hence, the various meshes had different numbers of unit cells. 

For extension loads the boundary conditions were like those in equation 13 if one considers a 
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and 0 to be the  diinensions of the entire mesh, rather than just a quarter unit cell except that the 

top surface was traction free. Hence, the normal displacement "v" was not constrained to be 

constant along the top. For shear load all boundary displacements were constrained to follow the 

deformation u = cy and v = cx. Consequently, the boundaries remained straight after 

deformation for shear loading. 

For flexure loads the top and bottom surfaces of the model were traction free. A linear 

variation of normal displacements were imposed on left and right ends of the model. 

Results and Discussion 

There are two types of results which will be discussed. The first will illustrate the effect 

of specimen thickness on effective moduli. The second will illustrate the effect of unit cell 

location on stress distributions. 

gffective Moduli 

For nominally simple deformation states, the effective engineering properties are expected 

to converge to constant values as the specimen thickness increases. Figure 3 shows the variation 

of the normalized effective E,. Figure 3a shows the variation of the average E, with the number 

of unit cells. The Ex is normalized by the Ex for an infinite array of unit cells modeled using 

conventional finite dements. .The three curves were obtained using conventional finite elements 

and 8-node and 12-node multi-field macro elements. The 8-node macro element must be 

inherently a little too stiff, since it converges to a value approximately one percent too large. 

The 12-node macro element agrees very well with the conventional finite element results. For 

8 unit cells through the thickness the effective E, is within about one percent of convergence. 

This indicates that a specimen would need to be 8 unit cells thick to give an effective E, within 
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one percent of a very thick specimen. Figure 3b shows the variation of the effective E, with 

position for a configuration which has eight unit cells through the thickness. The effective E, 

for each quarter unit cell was calculated based on the strain energy in the region. This is not a 

rigorous definition, but it does offer some insight. The figure shows that the boundary quarter 

unit  cell is about 18 percent softer than an interior quarter unit cell. The next quarter unit cell 

is about 5 percent too stiff. The third quarter unit cell has almost exactly the same stiffness as 

cells which are much further from the boundary. There is an obvious boundary effect, but it dies 

out very quickly. 

Figure 4 shows the effect of model size on normalized effective shear modulus Gxy. 

In contrast to K, the shear modulus converges from the stiff side. This difference is a 

consequence of the boundary conditions imposed. For E, there were free surfaces. The traction 

free condition permitted warping deformation to occur more easily near the free surface than in 

the interior, so the boundary caused softening. In contrast, all of the finite size shear specimens 

had specified x- and y- displacements over the entire boundary. This fully constrained boundary 

deformation resulted in larger effective G,, for smaller specimens. Figure 4 also shows that 

8-node macro elements perform poorly in shear. The 12-node macro elements perform quite 

well. It is interesting to note the distribution of the strain energy in a finite size shear model. 

The bar chart in Fig. 5 shows the strain energy in each quarter unit cell for a 3x3 array of unit 

cells. The effect of the boundary on the strain energy distribution is obviously quite complex. 

Figure 6 shows the variation of normalized flexural modulus with model size. The 

flexural modulus is defined to be (flexural stiffness)/I, where I = the second moment of the 

area. The flexural modulus in Figure 6 is normalized by the value for a configuration which is 
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ten cells thick. The flexural modulus converges more slowly than the extensional modulus. The 

12-node macro element performs very well. The 8-node macro element is a little too stiff. 

Stress Dist ri bur ions 

Figures 7-9 illustrate the effect of a free surface on stress distributions. Distributions are 

shown for extension, shear, and flexure. The stresses shown are evaluated with respect to the 

xy (global) coordinate system. 

Figure 7 shows the stress distributions for extension loading for three unit cells from two 

different configurations. One configuration had two unit cells through the thickness. The other 

had six unit cells through the thickness. The locations of the unit cells considered are indicated 

by shading in the figures. The waviness of the x-direction tow and the inhomogeneity causes a 

complicated variation of all three stresses. The ax variation in the longitudinal tow is dominated 

by flexure induced by tow straightening, as shown by the locations of maximum and minimum 

ax. The a,, is largest where the tows contact. The a,, is largest where the tow rotation is largest. 

There are both striking similarities and differences in the stress distributions for the three 

unit cells. Figure 7 shows that the interior and exterior unit cells have very different stress 

distributions. There is obviously a significant free surface effect. The exterior unit cells in 

Figure 7 have very similar distributions for. all three stress components. This suggests that for 

extension load the response of the exterior unit cells is not very sensitive to the total specimen 

thickness. 

The interior unit cell exhibits almost the same symmetries that one would expect from 

a cell embedded inside an infinite array. Also, the interior half of the exterior unit cells has 

stress distributions which are very close to those for the lower half of the interior unit cell. 

Apparently the free surface effect does not propagate very far into the interior. 
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Figure 8 shows the stress distributions for shear loading. Single unit cell and 3x3 unit 

cell configurations were studied. Only the cy and uXy distributions are shown, since ax was quite 

small. In this case there are no free surfaces. (Displacements were specified along the entire 

boundary.) As was the case for extension, the interior and exterior response is different. The 

interior unit cell is located in the middle of the finite element model. Hence, the symmetries 

exhibited by the interior cell do not indicate the attenuation of boundary effects. In contrast to 

extension load, Figure 8 shows that for shear load the response of the boundary unit cells is very 

sensitive to total specimen size. Further studies are needed to determine the boundary layer 

thickness for shear loads. 

Figure 9 shows stress distributions for flexure loads. Only exterior unit cells are 

compared. The single unit cell model was subjected to a combination of extension and flexure 

so that the loading would be comparable to the exterior unit cell of the thicker model. The 

thicker model was subjected to pure flexure. Both models have free surfaces at both the top and 

bottom. The maximum ax does not occur at the free surface. This is because local flexure of the 

wavy fiber tow as it tries to straighten attenuates the ax. The top halves of the two unit cells in 

Figure 9 have very similar a,, a,,, and a,, distributions. The lower halves exhibit much more 

differences. This is not surprising since the lower surface of the single cell is traction free but 

the lower surface of the cell from the thicker model is not. These results further indicate that 

there is a free surface effect (in this case, from the lower surface of the single unit cell model), 

but that the boundary layer is quite small. Finally, it should be noted that the stresses were lower 

for the flexure case than for the extension case even though the maximum nominal axial strain 

was -001 for both. 

31 



Coi~clusions 

Boundary effects were studied for woven composites subjected to in-plane extension, 

shear, and flexure. Effective moduli and stress distributions were calculated for configurations 

ranging from very thin to very thick. Only two dimensional models were studied. Since woven 

textiles are really three dimensional, these two dimensional results should only be interpreted 

qualitatively. Boundary effects were significant both in terms of stiffness and stresses. 

A specimen thickness of 6-8 unit cells was required to obtain moduli within about 2% of that 

for very thick specimens. For extension and flexure loading the stress distribution in exterior 

unit cells were quite insensitive to total specimen thickness. There appeared to be a characteristic 

response of boundary cells. Also, the boundary effect did not propagate very far into the 

interior. The response for shear load was more complex than for extension and flexure. Further 

work is needed to characterize boundary effects for shear loads. 
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I;igui-c Captions 

Figure 1. 

Figure 2. 

Figure 3. 

Variation of cross section with location. 

Basic two-dimensional unit cell models. 

Normalized extensional modulus E,. Eight-node traditional elements were used 

for the infinitely repeating unit  cell case. 

(a) Average normalized E, vs. number of unit cells through thickness. 

(b) Normalized extensional modulus vs. position in an 8-unit cell 

configuration (The sketch only shows four unit cells, since the 

configuration is symmetric.) 

I 

I Figure 4. Normalized shear modulus vs. number of unit cells through the thickness of the 

configuration. (The number of unit cells is the same in both the x- and y- 

directions.) 

Normalized strain energy distribution in 3x3 unit cell model subjected to shear 

load. Strain energy in each quarter unit cell is normalized by that for an infinitely 

repeating unit cell array subjected to shear. 

Normalized flexural modulus vs. number of unit cells through the thickness of the 

configuration. Results were normalized with the flexural modulus for a ten unit 

cell model. 

Stress contours for a two-dimensional model of a plain weave composite under 

extension (nominal axial strain = -001). 

(a) Axial Stress 

(b) Transverse Stress 

(c) Shear Stress 

Figure 5.  

Figure 6 .  

Figure 7. 

I 
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Figure 8. Stress contours for a two-dimensional model of a plain weave composite under 

shear (nominal shear strain = -001). 

(a) Transverse Stress 

(b) Shear Stress 

Stress contours for a two-dimensional model of a plain weave composite under 

bending (nominal axial strain at top surface = -001). 

(a) Axial Stress 

(b) Transverse Stress 

(c) Shear Stress 

Figure 9. 
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Figure 1 Variation of cross section with location. 
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(a) Full unit cell 
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(b) Quarter unit cell 

Figure 2 Basic two-dimensional unit cell models. 
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(a) Average normalized E,vs number of unit cells through thickness. 

Fig. 3 Normalized extensional modulus E,. Eight-node traditional elements 
were used for the infinitely repeating unit cell case. 
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(b) Normalized extensional modulus vs. position in an 8-unit 
cell configuration. (The sketch only shows four unit cells, 
since the configuration is symmetric.) 

Figure 3, completed. 
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Fig. 4 Normalized shear modulus vs. number of unit cells through the thickness 
of the configuration.(The number of unit cells is the same in both the 
x- and y- directions). 
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Figure 5 Normalized strain energy distribution in 3x3 unit cell model subjected to shear load. 
Strain energy in each quarter unit cell is normalized by that for an infinitely repeating 
unit cell array subjected to shear. 
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Fig. 6 Normalized flexural modulus vs. number of unit cells through the 
thickness of the configuration. Results were normalized with the 
flexural modulus for a ten unit cell model. 



(i) Top unit cell of model with two 
unit cells through thickness. 

(ii) Exterior unit cell of model with six 
unit cells through thickness. 

(iii) Interior unit cell of model with six 
unit cells through thickness. 

(a) Axial Stress 

Figure 7 Stress contours for a two dimensional model of a plain weave composite 
under extension ( nominal axial strain = -001). 
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(i) Top unit cell of model with two 
unit cells through thickness. .. . 

(ii) Exterior unit cell of model with six 
unit cells through thickness. 

(iii) Interior unit cell of model with six 
unit cells through thickness. 

(b) Transverse Stress 

Stress. Pa 
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(i) Top unit cell of model with two 
unit cells through thickness. 

(ii) Exterior unit cell of model with six 
unit cells through thickness. 

(iii) Interior unit cell of model with six 
unit cells through thickness. 

(c) Shear Stress 

Figure 7,  Concluded. 
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(i) Single Unit Cell 

~ ~~~ 

(ii) Exterior. Unit Cell of a (3x3) unit cell model 

~~ 

(iii) Interior Unit Cell of a (3x3) unit cell model 

Stress, Pa 

8.0OOe+006 
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7.273e+005 
-7.273e-5 
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-3.63&+006 
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-6.545ea 
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(a) Transverse Stress 

Figure 8 Stress contours for a two dimensional model of a plain weave 
composite under shear. (nominal shear strain = -001) 
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(i) Single Unit Cell 

(ii) Exterior Unit Cell of a (3x3) unit cell model 

(iii) Interior Unit Cell of a (3x3) unit cell model 

, (b) Shear Stress 

Figure 8, Concluded. 



(i) Single Unit Cell 

Stress, Pa 
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(ii) Exterior Unit Cell of a (3x3) unit cell model 

(a) Axial Stress 

Figure 9 Stress contours for a two dimensional model of a plain weave 
composite under bending. (nominal axial strain at top surface = -001) 

~ 
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(i) Single Unit Cell 

(ii) Exterior Unit Cell of a (3x3) unit cell model 

(c) Shear Stress 
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Figure 9, Concluded. 
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